Some properties of *I*-Luzin sets joint work with Szymon Żeberski

Marcin Michalski

Wrocław University of Technology

Winter School in Abstract Analysis 2015, section Set Theory and Topology 31.01 - 07.02.2015, Hejnice We live in the Euclidean space \mathbb{R}^n .

→ @ → → 注 → → 注 →

Ξ.

Marcin Michalski

Some properties of \mathcal{I} -Luzin sets

伺き くまき くまき

3

We live in the Euclidean space \mathbb{R}^n .

Definition

For each $A, B \subseteq \mathbb{R}^n$, $\bar{x} \in \mathbb{R}^n$ and $b \in \mathbb{R}$ we define:

$$A + B = \{ \overline{a} + \overline{b} : \overline{a} \in A, \overline{b} \in B \},$$

$$\overline{x} + A = \{ \overline{x} \} + A,$$

$$bA = \{ b\overline{a} : \overline{a} \in A \}.$$

We live in the Euclidean space \mathbb{R}^n .

Definition

For each $A, B \subseteq \mathbb{R}^n$, $\bar{x} \in \mathbb{R}^n$ and $b \in \mathbb{R}$ we define:

$$A + B = \{\overline{a} + \overline{b} : \overline{a} \in A, \overline{b} \in B\},$$

$$\overline{x} + A = \{\overline{x}\} + A,$$

$$bA = \{b\overline{a} : \overline{a} \in A\}.$$

Furthermore for each $n \in \omega$ we denote:

$$\underbrace{A+\cdots+A}_{n}=\bigoplus_{n}^{n}A.$$

3

We live in the Euclidean space \mathbb{R}^n .

Definition

For each $A, B \subseteq \mathbb{R}^n$, $\bar{x} \in \mathbb{R}^n$ and $b \in \mathbb{R}$ we define:

$$A + B = \{ \overline{a} + \overline{b} : \overline{a} \in A, \overline{b} \in B \},$$

$$\overline{x} + A = \{ \overline{x} \} + A,$$

$$bA = \{ b\overline{a} : \overline{a} \in A \}.$$

Furthermore for each $n \in \omega$ we denote:

$$\underbrace{A+\cdots+A}_{n}=\bigoplus_{n}^{n}A.$$

For a set $A \subseteq \mathbb{R}^n$ and $\bar{x} = (x_1, \ldots, x_k) \in \mathbb{R}^k$, 0 < k < n, we define:

$$A_{\bar{x}} = \{(y_{k+1}, \ldots, y_n) : (x_1, \ldots, x_k, y_{k+1}, \ldots, y_n) \in A\}$$

▲□ → ▲ □ → ▲ □ →

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

(*) *) *) *)

A 1

Ξ.

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

Let's denote family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

• is translation invariant if for each $\bar{x} \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $\bar{x} + A \in \mathcal{I}$;

-

< 3 > < 3 >

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

Let's denote family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $\bar{x} + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

< 3 > < 3 >

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

Let's denote family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $\bar{x} + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

• \mathcal{I} -residual if A is a complement of some set $I \in \mathcal{I}$;

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

Let's denote family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $\bar{x} + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I} -residual if A is a complement of some set $I \in \mathcal{I}$;
- *I*-positive Borel set if $A \in \mathcal{B} \setminus \mathcal{I}$;

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

Let's denote family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $\bar{x} + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I} -residual if A is a complement of some set $I \in \mathcal{I}$;
- *I*-positive Borel set if $A \in \mathcal{B} \setminus \mathcal{I}$;
- *I*-nonmeasurable if A doesn't belong to the σ-field σ(B ∪ I) generated by Borel sets and the σ-ideal I;

Considering the algebraic structure of \mathbb{R}^n we treat it as a linear space over the rationals $\mathbb{Q}.$

Let's denote family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $\bar{x} + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I} -residual if A is a complement of some set $I \in \mathcal{I}$;
- *I*-positive Borel set if $A \in \mathcal{B} \setminus \mathcal{I}$;
- *I*-nonmeasurable if A doesn't belong to the σ-field σ(B ∪ I) generated by Borel sets and the σ-ideal I;
- completely *I*-nonmeasurable if A ∩ B is *I*-nonmeasurable for every *I*-positive Borel set B.

We say that a set A is an \mathcal{I} -Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$. A is called super \mathcal{I} -Luzin set, if A is an \mathcal{I} -Luzin set and for each \mathcal{I} -positive Borel set B we have $|A \cap B| = |A|$.

We say that a set A is an \mathcal{I} -Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$. A is called super \mathcal{I} -Luzin set, if A is an \mathcal{I} -Luzin set and for each \mathcal{I} -positive Borel set B we have $|A \cap B| = |A|$.

For \mathcal{M} and \mathcal{N} σ -ideals of meager and null sets respectively we call a \mathcal{M} -Luzin set simply a Luzin set and a \mathcal{N} -Luzin set a Sierpiński set.

We say that a set A is an \mathcal{I} -Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$. A is called super \mathcal{I} -Luzin set, if A is an \mathcal{I} -Luzin set and for each \mathcal{I} -positive Borel set B we have $|A \cap B| = |A|$.

For \mathcal{M} and \mathcal{N} σ -ideals of meager and null sets respectively we call a \mathcal{M} -Luzin set simply a Luzin set and a \mathcal{N} -Luzin set a Sierpiński set.

Example

Let $\mathcal{I} = [\mathbb{R}^n]^{\leq \omega}$. Then a set A is \mathcal{I} -nonmeasurable iff it's not Borel and completely \mathcal{I} -nonmeasurable iff it's a Bernstein set. Furthermore all uncountable sets are \mathcal{I} -Luzin.

向 ト イヨ ト イヨ ト

 \mathcal{I} has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I} -positive Borel set A a set A + D is \mathcal{I} -residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

The above notion was introduced in [Bartoszewicz A., Filipczak M., Natkaniec T., On Smital Properties, 2011].

(*) *) *) *)

 \mathcal{I} has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I} -positive Borel set A a set A + D is \mathcal{I} -residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

The above notion was introduced in [Bartoszewicz A., Filipczak M., Natkaniec T., On Smital Properties, 2011].

Definition

I has a Smital Property if A + D is I-residual for each I-positive Borel set A and each dense set D. I has a Steinhaus Property if for every I-positive Borel sets A and B a set A + B has nonempty interior.

 \mathcal{I} has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I} -positive Borel set A a set A + D is \mathcal{I} -residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

The above notion was introduced in [Bartoszewicz A., Filipczak M., Natkaniec T., On Smital Properties, 2011].

Definition

I has a Smital Property if A + D is I-residual for each I-positive Borel set A and each dense set D. I has a Steinhaus Property if for every I-positive Borel sets A and B a set A + B has nonempty interior.

Proposition

Steinhaus Property \Rightarrow Smital Property \Rightarrow Weaker Smital Property.

(人間) システン イラン

Classic examples of σ -ideals that have all of the stated properties are \mathcal{M} and \mathcal{N} . We may obtain further examples by Fubini products of ideals.

-

- B

Classic examples of σ -ideals that have all of the stated properties are \mathcal{M} and \mathcal{N} . We may obtain further examples by Fubini products of ideals.

Definition

Let $\mathcal{I} \subseteq P(\mathbb{R}^k)$ and $\mathcal{J} \subseteq P(\mathbb{R}^m)$ be σ -ideals. We define a σ -ideal $\mathcal{I} \otimes \mathcal{J} \subseteq P(\mathbb{R}^{k+m})$ as follows:

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow (\exists B \in \mathcal{B}) (A \subseteq B \land \{\bar{x} \in \mathbb{R}^k : B_{\bar{x}} \notin \mathcal{J}\} \in \mathcal{I})$

A B + A B +

Classic examples of σ -ideals that have all of the stated properties are \mathcal{M} and \mathcal{N} . We may obtain further examples by Fubini products of ideals.

Definition

Let $\mathcal{I} \subseteq P(\mathbb{R}^k)$ and $\mathcal{J} \subseteq P(\mathbb{R}^m)$ be σ -ideals. We define a σ -ideal $\mathcal{I} \otimes \mathcal{J} \subseteq P(\mathbb{R}^{k+m})$ as follows:

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow (\exists B \in \mathcal{B}) (A \subseteq B \land \{\bar{x} \in \mathbb{R}^k : B_{\bar{x}} \notin \mathcal{J}\} \in \mathcal{I})$

Theorem (Bartoszewicz, Filipczak, Natkaniec, 2011)

If $\mathcal I$ and $\mathcal J$ have the Weaker Smital Property then $\mathcal I\otimes \mathcal J$ also has it.

向 ト イヨ ト イヨ ト

Lemma

Let P and Q be disjoint perfect sets. Then there exist perfect sets $P' \subseteq P$ and $Q' \subseteq Q$ such that for each $x \in X$ a set $(x + P') \cap Q'$ contains at most one point.

э.

Lemma

Let P and Q be disjoint perfect sets. Then there exist perfect sets $P' \subseteq P$ and $Q' \subseteq Q$ such that for each $x \in X$ a set $(x + P') \cap Q'$ contains at most one point.

Remark (Grzegorz Plebanek, last week)

The above Lemma can be reformulated as follows: For each Borel rectangle $P \times Q$ of uncountable sets exists Borel rectangle $P' \times Q' \subseteq P \times Q$ of uncountable sets such that a function f(x, y) = x - y restricted to $P' \times Q'$ is an injection.

There exists a translation invariant, containing uncountable sets σ -ideal \mathcal{I} with Borel base for which there is an \mathcal{I} -measurable \mathcal{I} -Luzin set.

There exists a translation invariant, containing uncountable sets σ -ideal \mathcal{I} with Borel base for which there is an \mathcal{I} -measurable \mathcal{I} -Luzin set.

Proof.

Let P' and Q' be perfect subsets from the previous Lemma for $P = [0, 1] \times \mathbb{R}^{n-1}$ and $Q = [2, 3] \times \mathbb{R}^{n-1}$. Set \mathcal{I} to be a σ -ideal generated by translations of P' i.e.

$$\mathcal{I} = \{ X \subseteq \mathbb{R}^n : \ (\exists C \in [\mathbb{R}^n]^\omega) (X \subseteq P' + C \}.$$

For each $I \in \mathcal{I}$ $Q' \cap I$ is countable, so Q' is an \mathcal{I} -Luzin set.

向 ト イヨ ト イヨ ト

Declaration

From now on, we will assume that a $\sigma\text{-ideal}\ \mathcal I$ of subsets of $\mathbb R^n$

- is translation invariant,
- has a Borel base,
- has the Weaker Smital Property.

 \mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.

\mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.

Proof.

Let L be an \mathcal{I} -Luzin and suppose that it's not \mathcal{I} -nonmeasurable. Then there exists some \mathcal{I} -positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X$ $|(P + x) \cap Q| \leq 1$.

A B + A B +

\mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.

Proof.

Let L be an \mathcal{I} -Luzin and suppose that it's not \mathcal{I} -nonmeasurable. Then there exists some \mathcal{I} -positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X$ $|(P + x) \cap Q| \leq 1$.

• If P or Q belongs to \mathcal{I} then we have a contradiction and we are done.

\mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.

Proof.

Let L be an \mathcal{I} -Luzin and suppose that it's not \mathcal{I} -nonmeasurable. Then there exists some \mathcal{I} -positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X$ $|(P + x) \cap Q| \leq 1$.

• If P or Q belongs to \mathcal{I} then we have a contradiction and we are done.

2 Neither P nor Q belongs to \mathcal{I} .

\mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.

Proof.

Let L be an \mathcal{I} -Luzin and suppose that it's not \mathcal{I} -nonmeasurable. Then there exists some \mathcal{I} -positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X$ $|(P + x) \cap Q| \leq 1$.

If P or Q belongs to I then we have a contradiction and we are done.

2 Neither *P* nor *Q* belongs to \mathcal{I} .

Let *D* witness the Weaker Smital Property. Then P + D is \mathcal{I} -residual and $(P + D) \cap Q \notin \mathcal{I}$. On the other hand clearly $(P + D) \cap Q$ is countable. Contradiction completes the proof.

同下 イヨト イヨト

\mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable.

Proof.

Let L be an \mathcal{I} -Luzin and suppose that it's not \mathcal{I} -nonmeasurable. Then there exists some \mathcal{I} -positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X$ $|(P + x) \cap Q| \leq 1$.

- If P or Q belongs to I then we have a contradiction and we are done.
- **2** Neither *P* nor *Q* belongs to \mathcal{I} .

Let *D* witness the Weaker Smital Property. Then P + D is \mathcal{I} -residual and $(P + D) \cap Q \notin \mathcal{I}$. On the other hand clearly $(P + D) \cap Q$ is countable. Contradiction completes the proof.

Corollary

Super *I*-Luzin sets are completely *I*-nonmeasurable.

Proposition

The existence of an \mathcal{I} -Luzin set implies the existence of an \mathcal{I} -Luzin set L such that $cf(|L|) > \omega$.

Proposition

The existence of an \mathcal{I} -Luzin set implies the existence of an \mathcal{I} -Luzin set L such that $cf(|L|) > \omega$.

Proposition

Let A be a set. Then for $X = \bigcup_{n \in \omega} \bigoplus^n (A \cup \{\overline{0}\} \cup -A)$ we have X = -X = X + X.

Proposition

The existence of an \mathcal{I} -Luzin set implies the existence of an \mathcal{I} -Luzin set L such that $cf(|L|) > \omega$.

Proposition

Let A be a set. Then for $X = \bigcup_{n \in \omega} \bigoplus^n (A \cup \{\overline{0}\} \cup -A)$ we have X = -X = X + X.

Theorem

The existence of an $\mathcal{I}\text{-}Luzin$ set implies the existence of a super $\mathcal{I}\text{-}Luzin$ set.

Lemma

Let L be an $\mathcal{I}\text{-Luzin}$ set. Then there exists a linearly independent $\mathcal{I}\text{-Luzin}$ set.

∃ 990

Lemma

Let L be an \mathcal{I} -Luzin set. Then there exists a linearly independent \mathcal{I} -Luzin set.

Lemma

Let L be an I-Luzin set of cardinality \mathfrak{c} . Then there exists a linearly independent super I-Luzin set.

Problem

Does the existence of an \mathcal{I} -Luzin set imply the existence of an \mathcal{I} -Luzin set which is a Hamel base?

通 と く ヨ と く ヨ と …

Theorem

Let L be a linearly independent \mathcal{I} -Luzin set of cardinality c. Then there exists a set X such that $\{x + L : x \in X\}$ is a partition of \mathbb{R}^n .

Theorem (CH)

For each \mathcal{I} -Luzin set L there exists an \mathcal{I} -Luzin set X such that $\{x + L : x \in X\}$ is a partition of \mathbb{R}^n .

高 と く ヨ と く ヨ と

Assume in addition that $\ensuremath{\mathcal{I}}$ is scaling invariant i.e.

 $(\forall x \in \mathbb{R})(\forall A \in \mathcal{I})(xA \in \mathcal{I}).$

Theorem (CH)

There exists an \mathcal{I} -Luzin set L such that L + L is an \mathcal{I} -Luzin set.

高 と く ヨ と く ヨ と

Assume in addition that $\ensuremath{\mathcal{I}}$ is scaling invariant i.e.

 $(\forall x \in \mathbb{R})(\forall A \in \mathcal{I})(xA \in \mathcal{I}).$

Theorem (CH)

There exists an I-Luzin set L such that L + L is an I-Luzin set.

Theorem (CH)

There exists an \mathcal{I} -Luzin set L such that $L + L = \mathbb{R}^n$.

伺 とう ほう うちょう

Assume in addition that $\ensuremath{\mathcal{I}}$ is scaling invariant i.e.

 $(\forall x \in \mathbb{R})(\forall A \in \mathcal{I})(xA \in \mathcal{I}).$

Theorem (CH)

There exists an I-Luzin set L such that L + L is an I-Luzin set.

Theorem (CH)

There exists an \mathcal{I} -Luzin set L such that $L + L = \mathbb{R}^n$.

Theorem (CH)

For each $n \in \omega \setminus \{0\}$ There exists an \mathcal{I} -Luzin set L such that $\bigoplus^n L$ is an \mathcal{I} -Luzin set and $\bigoplus^{n+1} L = \mathbb{R}^m$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (CH)

There is a linearly independent \mathcal{I} -Luzin set L such that span(L) is \mathcal{I} -Luzin set.

▲□ → ▲ 三 → ▲ 三 → …

э.

Theorem (CH)

There is a linearly independent \mathcal{I} -Luzin set L such that span(L) is \mathcal{I} -Luzin set.

Corollary (CH)

- On There exists an *I*-Luzin set L such that ⊕ⁿ⁺¹ L is an *I*-Luzin for each n ∈ ω,
- **3** There exists an \mathcal{I} -Luzin set L such that L + L = L,
- On There exists an *I*-Luzin set L such that (⊕ⁿ⁺¹ L : n ∈ ω) is an ascending sequence of *I*-Luzin sets.

向下 イヨト イヨト

Theorem (CH)

There is a linearly independent \mathcal{I} -Luzin set L such that span(L) is \mathcal{I} -Luzin set.

Corollary (CH)

- O There exists an *I*-Luzin set L such that ⊕ⁿ⁺¹ L is an *I*-Luzin for each n ∈ ω,
- 3 There exists an \mathcal{I} -Luzin set L such that L + L = L,
- **③** There exists an \mathcal{I} -Luzin set L such that $\langle \bigoplus^{n+1} L : n \in \omega \rangle$ is an ascending sequence of \mathcal{I} -Luzin sets.

Theorem

It is consistent that $\mathfrak{c} = \omega_2$ and there is a Luzin set which is a linear subspace of \mathbb{R}^n .

伺 と く ヨ と く ヨ と

Problem

Does the existence of a Luzin set imply the existence of a Luzin set which is a linear subspace of \mathbb{R}^n ?

A B + A B +

Theorem (CH)

There exists a Luzin set L such that L + L is a Bernstein set.

Theorem (CH)

There exists a Sierpiński set S such that S + S is a Bernstein set.

|▲□ → ▲ 三 → ▲ 三 → ○ へ ()

In [Recław I., Some additive properties of special sets of reals, 1991] author prooved that for every null set N and a perfect set P exists $P' \subseteq P$ such that N+P' remains null. Following lemmas generalize this result.

Action

Lemma

Let A be a null set. We can find a perfect set P such that for every n

$$A+\bigoplus^n P\in\mathcal{N}.$$

4 B b 4 B b

In [Recław I., Some additive properties of special sets of reals, 1991] author prooved that for every null set N and a perfect set P exists $P' \subseteq P$ such that N+P' remains null. Following lemmas generalize this result.

Action

Lemma

Let A be a null set. We can find a perfect set P such that for every n

$$A + \bigoplus^n P \in \mathcal{N}.$$

Lemma

Let A be a meager set. We can find a perfect set P such that for every n

$$A + \bigoplus^n P \in \mathcal{M}.$$

(*) *) *) *)

Corollary

There exists a comeager null set R and perfect nowhere dense null set P such that $R + P \subseteq R$.

Theorem (Babinkostova, Sheepers, 2007)

Let L be a Luzin set such that for every $M \in \mathcal{M} |L \cap M| \le \omega$ and let S be a Sierpiński set such that for every $N \in \mathcal{N} |L \cap M| \le \omega$. Then L + S is not a Bernstein set.

Corollary

There exists a comeager null set R and perfect nowhere dense null set P such that $R + P \subseteq R$.

Theorem (Babinkostova, Sheepers, 2007)

Let L be a Luzin set such that for every $M \in \mathcal{M} |L \cap M| \le \omega$ and let S be a Sierpiński set such that for every $N \in \mathcal{N} |L \cap M| \le \omega$. Then L + S is not a Bernstein set.

Theorem

Assume that c is a regular cardinal. There are no Luzin set L and Sierpiński set S such that L + S is a Bernstein set.

Proof.

Regularity of c implies that |L| = |S| = c. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

通 と く ヨ と く ヨ と

э

Proof.

Regularity of c implies that |L| = |S| = c. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L+S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

伺 ト イヨト イヨト

э

Proof.

Regularity of c implies that |L| = |S| = c. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L+S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

• $(L \cap A) + (S \cap B) \subseteq M + N;$

伺 ト イヨト イヨト

э

Proof.

Regularity of c implies that |L| = |S| = c. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L+S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

•
$$(L \cap A) + (S \cap B) \subseteq M + N;$$

•
$$(L \cap N) + (S \cap M^c)$$
 is a Luzin set;

< 同 > < 三 > < 三 >

Proof.

Regularity of c implies that |L| = |S| = c. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L+S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

•
$$(L \cap A) + (S \cap B) \subseteq M + N;$$

•
$$(L \cap N) + (S \cap M^c)$$
 is a Luzin set;

• $(L \cap N^c) + (S \cap M)$ is a Sierpiński set;

(同) (ヨ) (ヨ)

Proof.

Regularity of c implies that |L| = |S| = c. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L+S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

•
$$(L \cap A) + (S \cap B) \subseteq M + N;$$

•
$$(L \cap N) + (S \cap M^c)$$
 is a Luzin set;

•
$$(L \cap N^c) + (S \cap M)$$
 is a Sierpiński set;

•
$$|(L \cap N^c) + (S \cap M^c)| < \mathfrak{c}.$$

くぼう くほう くほう

Proof.

Regularity of \mathfrak{c} implies that $|L| = |S| = \mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote N = -R and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L+S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

•
$$(L \cap A) + (S \cap B) \subseteq M + N;$$

•
$$(L \cap N) + (S \cap M^c)$$
 is a Luzin set;

• $(L \cap N^c) + (S \cap M)$ is a Sierpiński set;

•
$$|(L \cap N^c) + (S \cap M^c)| < \mathfrak{c}.$$

It follows that all of these sets have intersection with P of power lesser than c, so there exists perfect set $P' \subseteq P$ such that $P' \subseteq (L+S)^c$. Thus L+S cannot be a Bernstein set.

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Thank you for your attention!

▲□ → ▲ 三 → ▲ 三 →

Bibliography

- Babinkostova L., Sheepers M. Products and selection principles, Topology Proceedings, Vol. 31 (2007), 431-443.
- Bartoszewicz A., Filipczak M., Natkaniec T.,On Smital properties, Topology and its Applications (2011), Vol 158, 2066-2075.
- Michalski M., Żeberski Sz., Some properties of *I*-Luzin sets (2015), Available at arXiv:1501.04900v1.
- Recław I., Some additive properties of special sets of reals, Colloquium Mathematicae, 62 (1991), 2, pp. 221-226.

ヨッ イヨッ イヨッ