Some properties of \mathcal{I}-Luzin sets joint work with Szymon Żeberski

Marcin Michalski

Wrocław University of Technology

Winter School in Abstract Analysis 2015, section Set Theory and Topology
31.01-07.02.2015, Hejnice

We live in the Euclidean space \mathbb{R}^{n}.

We live in the Euclidean space \mathbb{R}^{n}.

Definition

For each $A, B \subseteq \mathbb{R}^{n}, \bar{x} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ we define:

$$
\begin{aligned}
A+B & =\{\bar{a}+\bar{b}: \bar{a} \in A, \bar{b} \in B\} \\
\bar{x}+A & =\{\bar{x}\}+A, \\
b A & =\{b \bar{a}: \bar{a} \in A\} .
\end{aligned}
$$

We live in the Euclidean space \mathbb{R}^{n}.

Definition

For each $A, B \subseteq \mathbb{R}^{n}, \bar{x} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ we define:

$$
\begin{aligned}
A+B & =\{\bar{a}+\bar{b}: \bar{a} \in A, \bar{b} \in B\} \\
\bar{x}+A & =\{\bar{x}\}+A, \\
b A & =\{b \bar{a}: \bar{a} \in A\} .
\end{aligned}
$$

Furthermore for each $n \in \omega$ we denote:

$$
\underbrace{A+\cdots+A}_{n}=\bigoplus^{n} A .
$$

We live in the Euclidean space \mathbb{R}^{n}.

Definition

For each $A, B \subseteq \mathbb{R}^{n}, \bar{x} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ we define:

$$
\begin{aligned}
A+B & =\{\bar{a}+\bar{b}: \bar{a} \in A, \bar{b} \in B\} \\
\bar{x}+A & =\{\bar{x}\}+A, \\
b A & =\{b \bar{a}: \bar{a} \in A\} .
\end{aligned}
$$

Furthermore for each $n \in \omega$ we denote:

$$
\underbrace{A+\cdots+A}_{n}=\bigoplus^{n} A
$$

For a set $A \subseteq \mathbb{R}^{n}$ and $\bar{x}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}, 0<k<n$, we define:

$$
A_{\bar{x}}=\left\{\left(y_{k+1}, \ldots, y_{n}\right):\left(x_{1}, \ldots, x_{k}, y_{k+1}, \ldots, y_{n}\right) \in A\right\}
$$

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.
Let's denote family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^{n}$ and $A \in \mathcal{I}$ we have $\bar{x}+A \in \mathcal{I}$;

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.
Let's denote family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^{n}$ and $A \in \mathcal{I}$ we have $\bar{x}+A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.
Let's denote family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^{n}$ and $A \in \mathcal{I}$ we have $\bar{x}+A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I}-residual if A is a complement of some set $I \in \mathcal{I}$;

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.
Let's denote family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^{n}$ and $A \in \mathcal{I}$ we have $\bar{x}+A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I}-residual if A is a complement of some set $I \in \mathcal{I}$;
- I-positive Borel set if $A \in \mathcal{B} \backslash \mathcal{I}$;

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.
Let's denote family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^{n}$ and $A \in \mathcal{I}$ we have $\bar{x}+A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I}-residual if A is a complement of some set $I \in \mathcal{I}$;
- I-positive Borel set if $A \in \mathcal{B} \backslash \mathcal{I}$;
- \mathcal{I}-nonmeasurable if A doesn't belong to the σ-field $\sigma(\mathcal{B} \cup \mathcal{I})$ generated by Borel sets and the σ-ideal \mathcal{I};

Considering the algebraic structure of \mathbb{R}^{n} we treat it as a linear space over the rationals \mathbb{Q}.
Let's denote family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I} :

- is translation invariant if for each $\bar{x} \in \mathbb{R}^{n}$ and $A \in \mathcal{I}$ we have $\bar{x}+A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

Definition

We say that a set A is:

- \mathcal{I}-residual if A is a complement of some set $I \in \mathcal{I}$;
- I-positive Borel set if $A \in \mathcal{B} \backslash \mathcal{I}$;
- I-nonmeasurable if A doesn't belong to the σ-field $\sigma(\mathcal{B} \cup \mathcal{I})$ generated by Borel sets and the σ-ideal \mathcal{I};
- completely \mathcal{I}-nonmeasurable if $A \cap B$ is \mathcal{I}-nonmeasurable for every \mathcal{I}-positive Borel set B.

Definition

We say that a set A is an \mathcal{I}-Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I|<|A|$.
A is called super \mathcal{I}-Luzin set, if A is an \mathcal{I}-Luzin set and for each \mathcal{I}-positive Borel set B we have $|A \cap B|=|A|$.

Definition

We say that a set A is an \mathcal{I}-Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I|<|A|$.
A is called super \mathcal{I}-Luzin set, if A is an \mathcal{I}-Luzin set and for each \mathcal{I}-positive Borel set B we have $|A \cap B|=|A|$.

For \mathcal{M} and $\mathcal{N} \sigma$-ideals of meager and null sets respectively we call a \mathcal{M}-Luzin set simply a Luzin set and a \mathcal{N}-Luzin set a Sierpiński set.

Definition

We say that a set A is an \mathcal{I}-Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I|<|A|$.
A is called super \mathcal{I}-Luzin set, if A is an \mathcal{I}-Luzin set and for each \mathcal{I}-positive Borel set B we have $|A \cap B|=|A|$.

For \mathcal{M} and $\mathcal{N} \sigma$-ideals of meager and null sets respectively we call a \mathcal{M}-Luzin set simply a Luzin set and a \mathcal{N}-Luzin set a Sierpiński set.

Example

Let $\mathcal{I}=\left[\mathbb{R}^{n}\right]^{\leq \omega}$. Then a set A is \mathcal{I}-nonmeasurable iff it's not Borel and completely \mathcal{I}-nonmeasurable iff it's a Bernstein set. Furthermore all uncountable sets are \mathcal{I}-Luzin.

Definition

I has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I}-positive Borel set A a set $A+D$ is \mathcal{I}-residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

The above notion was introduced in [Bartoszewicz A., Filipczak M., Natkaniec T., On Smital Properties, 2011].

Definition

I has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I}-positive Borel set A a set $A+D$ is \mathcal{I}-residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

The above notion was introduced in [Bartoszewicz A., Filipczak M., Natkaniec T., On Smital Properties, 2011].

Definition

\mathcal{I} has a Smital Property if $A+D$ is \mathcal{I}-residual for each \mathcal{I}-positive Borel set A and each dense set D.
\mathcal{I} has a Steinhaus Property if for every \mathcal{I}-positive Borel sets A and B a set $A+B$ has nonempty interior.

Definition

I has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I}-positive Borel set A a set $A+D$ is \mathcal{I}-residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

The above notion was introduced in [Bartoszewicz A., Filipczak M., Natkaniec T., On Smital Properties, 2011].

Definition

\mathcal{I} has a Smital Property if $A+D$ is \mathcal{I}-residual for each \mathcal{I}-positive Borel set A and each dense set D.
I has a Steinhaus Property if for every \mathcal{I}-positive Borel sets A and B a set $A+B$ has nonempty interior.

Proposition

Steinhaus Property \Rightarrow Smital Property \Rightarrow Weaker Smital Property.

Classic examples of σ-ideals that have all of the stated properties are \mathcal{M} and \mathcal{N}. We may obtain further examples by Fubini products of ideals.

Classic examples of σ-ideals that have all of the stated properties are \mathcal{M} and \mathcal{N}. We may obtain further examples by Fubini products of ideals.

Definition

Let $\mathcal{I} \subseteq P\left(\mathbb{R}^{k}\right)$ and $\mathcal{J} \subseteq P\left(\mathbb{R}^{m}\right)$ be σ-ideals. We define a σ-ideal $\mathcal{I} \otimes \mathcal{J} \subseteq P\left(\mathbb{R}^{k+m}\right)$ as follows:

$$
A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow(\exists B \in \mathcal{B})\left(A \subseteq B \wedge\left\{\bar{x} \in \mathbb{R}^{k}: B_{\bar{x}} \notin \mathcal{J}\right\} \in \mathcal{I}\right)
$$

Classic examples of σ-ideals that have all of the stated properties are \mathcal{M} and \mathcal{N}. We may obtain further examples by Fubini products of ideals.

Definition

Let $\mathcal{I} \subseteq P\left(\mathbb{R}^{k}\right)$ and $\mathcal{J} \subseteq P\left(\mathbb{R}^{m}\right)$ be σ-ideals. We define a σ-ideal $\mathcal{I} \otimes \mathcal{J} \subseteq P\left(\mathbb{R}^{k+m}\right)$ as follows:

$$
A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow(\exists B \in \mathcal{B})\left(A \subseteq B \wedge\left\{\bar{x} \in \mathbb{R}^{k}: B_{\bar{x}} \notin \mathcal{J}\right\} \in \mathcal{I}\right)
$$

Theorem (Bartoszewicz, Filipczak, Natkaniec, 2011)
If \mathcal{I} and \mathcal{J} have the Weaker Smital Property then $\mathcal{I} \otimes \mathcal{J}$ also has it.

Lemma

Let P and Q be disjoint perfect sets. Then there exist perfect sets $P^{\prime} \subseteq P$ and $Q^{\prime} \subseteq Q$ such that for each $x \in X$ a set $\left(x+P^{\prime}\right) \cap Q^{\prime}$ contains at most one point.

Lemma

Let P and Q be disjoint perfect sets. Then there exist perfect sets $P^{\prime} \subseteq P$ and $Q^{\prime} \subseteq Q$ such that for each $x \in X a \operatorname{set}\left(x+P^{\prime}\right) \cap Q^{\prime}$ contains at most one point.

Remark (Grzegorz Plebanek, last week)

The above Lemma can be reformulated as follows:
For each Borel rectangle $P \times Q$ of uncountable sets exists Borel rectangle $P^{\prime} \times Q^{\prime} \subseteq P \times Q$ of uncountable sets such that a function $f(x, y)=x-y$ restricted to $P^{\prime} \times Q^{\prime}$ is an injection.

Theorem

There exists a translation invariant, containing uncountable sets σ-ideal \mathcal{I} with Borel base for which there is an I-measurable I-Luzin set.

Theorem

There exists a translation invariant, containing uncountable sets σ-ideal \mathcal{I} with Borel base for which there is an I-measurable I-Luzin set.

Proof.

Let P^{\prime} and Q^{\prime} be perfect subsets from the previous Lemma for $P=[0,1] \times \mathbb{R}^{n-1}$ and $Q=[2,3] \times \mathbb{R}^{n-1}$. Set \mathcal{I} to be a σ-ideal generated by translations of P^{\prime} i.e.

$$
\mathcal{I}=\left\{X \subseteq \mathbb{R}^{n}:\left(\exists C \in\left[\mathbb{R}^{n}\right]^{\omega}\right)\left(X \subseteq P^{\prime}+C\right\}\right.
$$

For each $I \in \mathcal{I} Q^{\prime} \cap I$ is countable, so Q^{\prime} is an \mathcal{I}-Luzin set.

Declaration

From now on, we will assume that a σ-ideal \mathcal{I} of subsets of \mathbb{R}^{n}

- is translation invariant,
- has a Borel base,
- has the Weaker Smital Property.

Theorem
 \mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable.

Theorem

\mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable.

Proof.

Let L be an \mathcal{I}-Luzin and suppose that it's not \mathcal{I}-nonmeasurable. Then there exists some \mathcal{I}-positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X|(P+x) \cap Q| \leq 1$.

Theorem

\mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable.

Proof.

Let L be an \mathcal{I}-Luzin and suppose that it's not \mathcal{I}-nonmeasurable. Then there exists some \mathcal{I}-positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X|(P+x) \cap Q| \leq 1$.
(1) If P or Q belongs to \mathcal{I} then we have a contradiction and we are done.

Theorem

\mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable.

Proof.

Let L be an \mathcal{I}-Luzin and suppose that it's not \mathcal{I}-nonmeasurable. Then there exists some \mathcal{I}-positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X|(P+x) \cap Q| \leq 1$.
(1) If P or Q belongs to \mathcal{I} then we have a contradiction and we are done.
(2) Neither P nor Q belongs to \mathcal{I}.

Theorem

\mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable.

Proof.

Let L be an \mathcal{I}-Luzin and suppose that it's not \mathcal{I}-nonmeasurable. Then there exists some \mathcal{I}-positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X|(P+x) \cap Q| \leq 1$.
(1) If P or Q belongs to \mathcal{I} then we have a contradiction and we are done.
(2) Neither P nor Q belongs to \mathcal{I}.

Let D witness the Weaker Smital Property. Then $P+D$ is \mathcal{I}-residual and $(P+D) \cap Q \notin \mathcal{I}$. On the other hand clearly $(P+D) \cap Q$ is countable. Contradiction completes the proof.

Theorem

\mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable.

Proof.

Let L be an \mathcal{I}-Luzin and suppose that it's not \mathcal{I}-nonmeasurable. Then there exists some \mathcal{I}-positive Borel set $B \subseteq L$ and we may find two disjoint perfect sets P and Q contained in B and furthermore, by Lemma, we may assume that for each $x \in X|(P+x) \cap Q| \leq 1$.
(1) If P or Q belongs to \mathcal{I} then we have a contradiction and we are done.
(2) Neither P nor Q belongs to \mathcal{I}.

Let D witness the Weaker Smital Property. Then $P+D$ is \mathcal{I}-residual and $(P+D) \cap Q \notin \mathcal{I}$. On the other hand clearly $(P+D) \cap Q$ is countable. Contradiction completes the proof.

Corollary

Super I-Luzin sets are completely \mathcal{I}-nonmeasurable.

Proposition

The existence of an \mathcal{I}-Luzin set implies the existence of an \mathcal{I}-Luzin set L such that $c f(|L|)>\omega$.

Proposition

The existence of an \mathcal{I}-Luzin set implies the existence of an \mathcal{I}-Luzin set L such that $c f(|L|)>\omega$.

Proposition

Let A be a set. Then for $X=\bigcup_{n \in \omega} \bigoplus^{n}(A \cup\{\overline{0}\} \cup-A)$ we have $X=-X=X+X$.

Proposition

The existence of an \mathcal{I}-Luzin set implies the existence of an \mathcal{I}-Luzin set L such that $c f(|L|)>\omega$.

Proposition

Let A be a set. Then for $X=\bigcup_{n \in \omega} \bigoplus^{n}(A \cup\{\overline{0}\} \cup-A)$ we have $X=-X=X+X$.

Theorem

The existence of an I-Luzin set implies the existence of a super I-Luzin set.

Lemma

Let L be an \mathcal{I}-Luzin set. Then there exists a linearly independent \mathcal{I}-Luzin set.

Lemma

Let L be an \mathcal{I}-Luzin set. Then there exists a linearly independent \mathcal{I}-Luzin set.

Lemma

Let L be an \mathcal{I}-Luzin set of cardinality c . Then there exists a linearly independent super \mathcal{I}-Luzin set.

Problem

Does the existence of an \mathcal{I}-Luzin set imply the existence of an \mathcal{I}-Luzin set which is a Hamel base?

Theorem

Let L be a linearly independent \mathcal{I}-Luzin set of cardinality c . Then there exists a set X such that $\{x+L: x \in X\}$ is a partition of \mathbb{R}^{n}.

Theorem (CH)

For each \mathcal{I}-Luzin set L there exists an \mathcal{I}-Luzin set X such that $\{x+L: x \in X\}$ is a partition of \mathbb{R}^{n}.

Assume in addition that \mathcal{I} is scaling invariant i.e.

$$
(\forall x \in \mathbb{R})(\forall A \in \mathcal{I})(x A \in \mathcal{I}) .
$$

Theorem (CH)
There exists an \mathcal{I}-Luzin set L such that $L+L$ is an \mathcal{I}-Luzin set.

Assume in addition that \mathcal{I} is scaling invariant i.e.

$$
(\forall x \in \mathbb{R})(\forall A \in \mathcal{I})(x A \in \mathcal{I}) .
$$

Theorem (CH)

There exists an \mathcal{I}-Luzin set L such that $L+L$ is an \mathcal{I}-Luzin set.

Theorem (CH)

There exists an \mathcal{I}-Luzin set L such that $L+L=\mathbb{R}^{n}$.

Assume in addition that \mathcal{I} is scaling invariant i.e.

$$
(\forall x \in \mathbb{R})(\forall A \in \mathcal{I})(x A \in \mathcal{I}) .
$$

Theorem (CH)

There exists an \mathcal{I}-Luzin set L such that $L+L$ is an \mathcal{I}-Luzin set.

Theorem (CH)

There exists an \mathcal{I}-Luzin set L such that $L+L=\mathbb{R}^{n}$.

Theorem (CH)

For each $n \in \omega \backslash\{0\}$ There exists an \mathcal{I}-Luzin set L such that $\bigoplus^{n} L$ is an \mathcal{I}-Luzin set and $\bigoplus^{n+1} L=\mathbb{R}^{m}$.

Theorem (CH)

There is a linearly independent \mathcal{I}-Luzin set L such that $\operatorname{span}(L)$ is \mathcal{I}-Luzin set.

Theorem (CH)

There is a linearly independent \mathcal{I}-Luzin set L such that $\operatorname{span}(L)$ is \mathcal{I}-Luzin set.

Corollary (CH)

(1) There exists an \mathcal{I}-Luzin set L such that $\bigoplus^{n+1} L$ is an \mathcal{I}-Luzin for each $n \in \omega$,
(2) There exists an \mathcal{I}-Luzin set L such that $L+L=L$,
(3) There exists an \mathcal{I}-Luzin set L such that $\left\langle\bigoplus^{n+1} L: n \in \omega\right\rangle$ is an ascending sequence of \mathcal{I}-Luzin sets.

Theorem (CH)

There is a linearly independent \mathcal{I}-Luzin set L such that $\operatorname{span}(L)$ is I-Luzin set.

Corollary (CH)

(1) There exists an \mathcal{I}-Luzin set L such that $\bigoplus^{n+1} L$ is an \mathcal{I}-Luzin for each $n \in \omega$,
(2) There exists an \mathcal{I}-Luzin set L such that $L+L=L$,
(3) There exists an \mathcal{I}-Luzin set L such that $\left\langle\bigoplus^{n+1} L: n \in \omega\right\rangle$ is an ascending sequence of \mathcal{I}-Luzin sets.

Theorem

It is consistent that $\mathfrak{c}=\omega_{2}$ and there is a Luzin set which is a linear subspace of \mathbb{R}^{n}.

Problem

Does the existence of a Luzin set imply the existence of a Luzin set which is a linear subspace of \mathbb{R}^{n} ?

Theorem (CH)

There exists a Luzin set L such that $L+L$ is a Bernstein set.

Theorem (CH)

There exists a Sierpiński set S such that $S+S$ is a Bernstein set.

In [Recław I., Some additive properties of special sets of reals, 1991] author prooved that for every null set N and a perfect set P exists $P^{\prime} \subseteq P$ such that $\mathrm{N}+\mathrm{P}^{\prime}$ remains null. Following lemmas generalize this result.

Lemma

Let A be a null set. We can find a perfect set P such that for every n

$$
A+\bigoplus^{n} P \in \mathcal{N} .
$$

In [Recław I., Some additive properties of special sets of reals, 1991] author prooved that for every null set N and a perfect set P exists $P^{\prime} \subseteq P$ such that $\mathrm{N}+\mathrm{P}^{\prime}$ remains null. Following lemmas generalize this result.

Lemma

Let A be a null set. We can find a perfect set P such that for every n

$$
A+\bigoplus^{n} P \in \mathcal{N}
$$

Lemma

Let A be a meager set. We can find a perfect set P such that for every n

$$
A+\bigoplus^{n} P \in \mathcal{M}
$$

Corollary

There exists a comeager null set R and perfect nowhere dense null set P such that $R+P \subseteq R$.

Theorem (Babinkostova, Sheepers, 2007)

Let L be a Luzin set such that for every $M \in \mathcal{M}|L \cap M| \leq \omega$ and let S be a Sierpiński set such that for every $N \in \mathcal{N}|L \cap M| \leq \omega$. Then $L+S$ is not a Bernstein set.

Corollary

There exists a comeager null set R and perfect nowhere dense null set P such that $R+P \subseteq R$.

Theorem (Babinkostova, Sheepers, 2007)

Let L be a Luzin set such that for every $M \in \mathcal{M}|L \cap M| \leq \omega$ and let S be a Sierpiński set such that for every $N \in \mathcal{N}|L \cap M| \leq \omega$. Then $L+S$ is not a Bernstein set.

Theorem

Assume that \mathfrak{c} is a regular cardinal. There are no Luzin set L and Sierpiński set S such that $L+S$ is a Bernstein set.

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

$$
\begin{aligned}
L+S= & ((L \cap N)+(S \cap M)) \cup\left((L \cap N)+\left(S \cap M^{c}\right)\right) \cup \\
& \cup\left(\left(L \cap N^{c}\right)+(S \cap M)\right) \cup\left(\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right)
\end{aligned}
$$

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

$$
\begin{aligned}
L+S= & ((L \cap N)+(S \cap M)) \cup\left((L \cap N)+\left(S \cap M^{c}\right)\right) \cup \\
& \cup\left(\left(L \cap N^{c}\right)+(S \cap M)\right) \cup\left(\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right) \\
& (L \cap A)+(S \cap B) \subseteq M+N ;
\end{aligned}
$$

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

$$
\begin{aligned}
L+S= & ((L \cap N)+(S \cap M)) \cup\left((L \cap N)+\left(S \cap M^{c}\right)\right) \cup \\
& \cup\left(\left(L \cap N^{c}\right)+(S \cap M)\right) \cup\left(\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right)
\end{aligned}
$$

- $(L \cap A)+(S \cap B) \subseteq M+N$;
- $(L \cap N)+\left(S \cap M^{c}\right)$ is a Luzin set;

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

$$
\begin{aligned}
L+S= & ((L \cap N)+(S \cap M)) \cup\left((L \cap N)+\left(S \cap M^{c}\right)\right) \cup \\
& \cup\left(\left(L \cap N^{c}\right)+(S \cap M)\right) \cup\left(\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right)
\end{aligned}
$$

- $(L \cap A)+(S \cap B) \subseteq M+N$;
- $(L \cap N)+\left(S \cap M^{c}\right)$ is a Luzin set;
- $\left(L \cap N^{c}\right)+(S \cap M)$ is a Sierpiński set;

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

$$
\begin{aligned}
L+S= & ((L \cap N)+(S \cap M)) \cup\left((L \cap N)+\left(S \cap M^{c}\right)\right) \cup \\
& \cup\left(\left(L \cap N^{c}\right)+(S \cap M)\right) \cup\left(\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right)
\end{aligned}
$$

- $(L \cap A)+(S \cap B) \subseteq M+N$;
- $(L \cap N)+\left(S \cap M^{c}\right)$ is a Luzin set;
- $\left(L \cap N^{c}\right)+(S \cap M)$ is a Sierpiński set;
- $\left|\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right|<\mathfrak{c}$.

Proof.

Regularity of \mathfrak{c} implies that $|L|=|S|=\mathfrak{c}$. Let R and P be sets as in last Corollary. Let us denote $N=-R$ and $M=-N^{c}$. Then $P \subseteq(M+N)^{c}$. We will show that also $(L+S)^{c}$ also contains some perfect set.

$$
\begin{aligned}
L+S= & ((L \cap N)+(S \cap M)) \cup\left((L \cap N)+\left(S \cap M^{c}\right)\right) \cup \\
& \cup\left(\left(L \cap N^{c}\right)+(S \cap M)\right) \cup\left(\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right)
\end{aligned}
$$

- $(L \cap A)+(S \cap B) \subseteq M+N$;
- $(L \cap N)+\left(S \cap M^{c}\right)$ is a Luzin set;
- $\left(L \cap N^{c}\right)+(S \cap M)$ is a Sierpiński set;
- $\left|\left(L \cap N^{c}\right)+\left(S \cap M^{c}\right)\right|<\mathfrak{c}$.

It follows that all of these sets have intersection with P of power lesser than \mathfrak{c}, so there exists perfect set $P^{\prime} \subseteq P$ such that $P^{\prime} \subseteq(L+S)^{c}$. Thus $L+S$ cannot be a Bernstein set.

Thank you for your attention!

Bibliography

- Babinkostova L., Sheepers M. Products and selection principles, Topology Proceedings, Vol. 31 (2007), 431-443.
- Bartoszewicz A., Filipczak M., Natkaniec T.,On Smital properties, Topology and its Applications (2011), Vol 158, 2066-2075.
- Michalski M., Żeberski Sz., Some properties of \mathcal{I}-Luzin sets (2015), Available at arXiv:1501.04900v1.
- Recław I., Some additive properties of special sets of reals, Colloquium Mathematicae, 62 (1991), 2, pp. 221-226.

